Insulin-like growth factor I stimulates inositol phosphate accumulation, a rise in cytoplasmic free calcium, and proliferation in cultured porcine thyroid cells.
نویسندگان
چکیده
Insulin-like growth factor (IGF-I) stimulates thyroid cell proliferation. Using primary cultured porcine thyroid cells, we studied the intracellular pathways that mediate the action of IGF-I on thyroid cell proliferation. IGF-I stimulates inositol phosphate accumulation, a rise in cytoplasmic free calcium [( Ca2+]i), and cell proliferation. Exposure to IGF-I results in a time- and dose-dependent accumulation of inositol monophosphate, inositol bisphosphate, and inositol trisphosphate. IGF-I also increases [Ca2+]i, measured using fura-2, a fluorescent Ca2+ indicator; the IGF-I-induced [Ca2+]i response occurs immediately, reaches a maximum within 1 min, and then slowly declines. IGF-I stimulates thyroid cell proliferation, stimulates thymidine incorporation, and increases cell numbers. The IGF-I-induced inositol phosphate accumulation and [Ca2+]i response parallel thyroid cell proliferation in a dose-dependent manner; the maximal response is observed at a concentration of 100 ng/ml IGF-I, with half-maximal stimulation at approximately 10 ng/ml. Inositol phosphate accumulation and [Ca2+]i response after IGF-I stimulation may function as intracellular messengers for thyroid cell proliferation. This report may constitute the first demonstration of IGF-I-stimulated inositol phosphate accumulation and [Ca2+]i response in the cells.
منابع مشابه
Epidermal growth factor stimulates the rapid accumulation of inositol (1,4,5)-trisphosphate and a rise in cytosolic calcium mobilized from intracellular stores in A431 cells.
Exposure of A431 human epidermoid carcinoma cells to epidermal growth factor (EGF), bradykinin, and histamine resulted in a time- and concentration-dependent accumulation of the inositol phosphates (InsP) inositol monophosphate, inositol bisphosphate, and inositol trisphosphate (InsP3). Maximal concentrations of EGF (316 ng/ml; approximately 50 nM), bradykinin (1 microM), and histamine (1 mM) r...
متن کاملMastoparan, a novel mitogen for Swiss 3T3 cells, stimulates pertussis toxin-sensitive arachidonic acid release without inositol phosphate accumulation
Mastoparan, a basic tetradecapeptide isolated from wasp venom, is a novel mitogen for Swiss 3T3 cells. This peptide induced DNA synthesis in synergy with insulin in a concentration-dependent manner; half-maximum and maximum responses were achieved at 14 and 17 microM, respectively. Mastoparan also stimulated DNA synthesis in the presence of other growth promoting factors including bombesin, ins...
متن کاملIdentification and characterization of insulin-like growth factor receptors on adult rat cardiac myocytes: linkage to inositol 1,4,5-trisphosphate formation.
Cultured cardiac myocytes from adult Sprague-Dawley rats express both insulin-like growth factor-I (IGF-I) receptors and insulin-like growth factor-II/mannose 6-phosphate (IGF-II/Man6P) receptors and respond to IGF-I with a dose-dependent accumulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,4-bisphosphate [Ins(1,4)P2]. Specific binding of [125I]IGF-I to isolated membranes ...
متن کاملEndothelin stimulates DNA synthesis in Swiss 3T3 cells. Synergy with polypeptide growth factors.
The vasoactive peptide endothelin is shown to be a potent mitogen for Swiss 3T3 cells. Although endothelin has little effect on DNA synthesis when added alone to cells in serum-free medium, the peptide synergizes very strongly with several other growth factors. A half-maximal response to endothelin is observed at approx. 0.3 nM, with a maximal effect at 3 nM. Over the same concentration range, ...
متن کاملProduction and functional characterization of human insulin-like growth factor 1
Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 264 31 شماره
صفحات -
تاریخ انتشار 1989